
Query Learning of Residual Symbolic
Automata

Kaizaburo Chubachi
Graduate School of Information
Sciences
Tohoku University
kaizaburo_chubachi@shino.ecei.tohoku.ac.jp

Ryo Yoshinaka
Tohoku University
ryoshinaka@tohoku.ac.jp

Diptarama Hendrian
Tohoku University
diptarama@tohoku.ac.jp

Ayumi Shinohara
Tohoku University
ayumisg@tohoku.ac.jp

Extended abstract of the 14th International Conference on Grammatical Inference
ICGI’18, September 5–7, 2018, Wrocław, Poland.

Abstract
We propose a learning algorithm for residual symbolic
finite-state automata (RSFA) under the minimally adequate
teacher (MAT) model [1]. MAT learning algorithms for resid-
ual finite-state automata (RFA) [4] and deterministic sym-
bolic finite state automata (SFA) [6] have been proposed
in [3] and [2], respectively. This work extends these works.

Author Keywords
MAT learning algorithms; residual symbolic finite-state au-
tomata.

In an SFA, transitions carry predicates over a decidable
Boolean algebra A on a (typically huge or infinite) alphabet
D. Following the definition in [2], we will use the notation
A = (D, Ψ, [[_]],⊥,>,∨,∧,¬) for an effective Boolean
algebra, where Ψ is a set of predicates closed under the
Boolean connectives and [[_]] : Ψ → 2D is a denotation
function. We assume it is decidable whether [[ϕ]] = ∅ for
any ϕ ∈ Ψ and moreover there is an effective procedure
to find an element of [[ϕ]] unless [[ϕ]] = ∅. An SFA is M =
(A, Q,Q0, F,∆) where Q is the state set, Q0 ⊆ Q and
F ⊆ Q are the initial and final state sets, respectively, and
∆ ⊆ Q × Ψ × Q is the transition relation. For ∆, we use δ
to denote the transition function δ : Q ×D → 2Q such that
δ(q, a) = {q′ | (q, ϕ, q′) ∈ ∆, a ∈ [[ϕ]]} for q ∈ Q and
a ∈ D. As usual, δ is extended to δ : Q × D∗ → 2Q. Let

Lq = {w ∈ D∗ | δ(q, w)∩F 6= ∅} for q ∈ Q. The language
L(M) accepted by M is

⋃
q∈Q0

Lq.

A language L′ is a residual language of L if there is u ∈ D∗

with L′ = {v ∈ D∗ | uv ∈ L}. The set of residual
languages of L is denoted by Res(L). A language L is
called prime in a class L of languages if L 6=

⋃
{L′ ∈

L | L′ (L }. The set of prime languages in L is denoted
by Prm(L). Following [4], we define an RSFA as an SFA
such that Lq is a residual language for each state q ∈ Q.
An RSFA M is called reduced if |Q| = |Prm(Res(L(M)))|
and Lq ∈ Prm(Res(L(M))) for each q ∈ Q.

Assuming that a MAT learning algorithm Λ for Ψ is avail-
able, Argyros and D’Antoni [2] have given a MAT learner for
deterministic SFAs. Following their setting, we propose a
learning algorithm for RSFAs, which pretends to be a MAT
for instances of Λ and answers membership queries (MQs)
and equivalence queries (EQs) using an observation table.
An observation table T = (U, V, T) is filled by MQs in the
usual way, where U is a prefix-closed set of words, V is a
suffix-closed set, and T is a map T : U × V → {+,−}. For
u ∈ U , define row(u) = { v ∈ V | T (uv) = + }. Note that,
differently from [3], the domain of T is U × V rather than
(U ∪ UD)× V .

Using T = (U, V, T), the proposed algorithm builds a hy-
pothesis H = (A, Q,Q0, F,∆) with Q = {u ∈ U |
row(u) ∈ Prm({row(u′) | u′ ∈ U}) }, Q0 = {u ∈
Q | row(u) ⊆ row(ε)}, F = {u ∈ Q | ε ∈ row(u)}.
The transition relation ∆ is obtained using |Q|2 instances
Λ(u,u′) for all u, u′ ∈ Q of the learning algorithm Λ for
Ψ . When Λ(u,u′) asks an MQ on a ∈ D, we return + if
row(u′) ⊆ {v ∈ V | MQ(uav) = +} and − otherwise.
When Λ(u,u′) asks an EQ on ϕ ∈ Ψ , we add (u, ϕ, u′) to
∆. Our answer to this EQ is suspended and will be gener-
ated by analyzing the built automaton or a counterexample

for an EQ on the automaton in the following procedure.

The algorithm checks the following three conditions on the
built automaton before raising an EQ to ensure that the final
output hypothesis will be a reduced RSFA.

• Condition 1: For u, u′ ∈ Q and a ∈ D, row(u) ⊆
row(u′) implies δ(u, a) ⊆ δ(u′, a).

• Condition 2: For u ∈ U and u′ ∈ δ(Q0, u), we have
row(u′) ⊆ row(u).

• Condition 3: For u ∈ Q and v ∈ V , we have v /∈
row(u) iff v /∈ Lu.

Condition 1 is verified by checking whether [[ϕ ∧ ¬ϕ′]] = ∅
for (u, ϕ, x), (u′, ϕ′, x) ∈ ∆ and x ∈ Q. When one of the
three conditions is not satisfied, either a counterexample
for Λ(u,u′) is found and ∆ is updated, or T is extended and
all instances of Λ are discarded. Note that, in [3], the au-
tomaton derived from an observation table always satisfies
essentially the same conditions as above, which ensures
that their algorithm finally outputs the canonical RSA for the
learning target, since their observation table has rows ua
for all u ∈ U and a ∈ D. On the other hand, our observa-
tion table does not have rows ua for all a ∈ D since D is
too huge or infinite. This is why we need to introduce and
check explicitly the above conditions.

When the hypothesis satisfies the three conditions above,
the algorithm asks an EQ. We can prove that if the hypothe-
sis passes the equivalence test, it is a reduced RSFA which
accepts the target language. When a counterexample w
is given by an EQ, we process the counterexample by the
following procedure, which is a modification of the one
in [2] for the non-deterministic setting. Firstly, we check if
MQ(w) = − and there is q ∈ Q0 withMQ(qw) = +. If it is
the case, q shall be removed from Q0 by adding all suffixes
of w to V . Otherwise, we have

∨
q∈Q0

MQ(qw) = MQ(w)

Table 1: The upper bound of EQs and MQs

Deterministic Residual

FA EQ n O(n2)
MQ O(n2|D|+ n logm) [5] O(n3m|D|) [3]

SFA EQ O(n3E ′) O(n4E)
MQ O(n4M′ + n4E ′ logm)1 [2] O(n6m(M+ E))

and we can find u, v ∈ D∗, a ∈ D and q ∈ δ(Q0, u) such
that w = uav andMQ(qav) 6=

∨
q′∈δ(q,a)MQ(q′v). By

checking a-moves from state q, either a counterexample for
Λ(q,q′) is found and ∆ is updated, or T is extended and all
instances of Λ are discarded.

We introduce some parameters to evaluate the query com-
plexity of our algorithm. For the learning target L∗ and
L ∈ Res(L∗), let ΓL = {{a ∈ D | L′ ⊆ a−1L} |
L′ ∈ Res(L∗)}. For a subset D ⊆ D, we assume that Λ
requires CEQ(D) EQs and CMQ(D) MQs to learn D. The
set of denotations of predicates that may appear in an au-
tomaton built by the learner during the learning process is
Φ = {

⋃
D∈S D | S ⊆ ΓL for L ∈ Res(L∗)}.1 E ′ = maxD∈Φ′ CEQ(D) and

M′ = maxD∈Φ′ CMQ(D),
where Γ′L = {{a ∈ D |
L′ = a−1L} | L′ ∈ Res(L∗)}
and Φ′ = {

⋃
D∈S D | S ⊆

Γ′L for L ∈ Res(L∗)}

Theorem 1. Let E = maxD∈Φ CEQ(D),M = maxD∈Φ CMQ(D),
n = |Res(L∗)|, and m be the length of the biggest coun-
terexample returned by an EQ. Then, the proposed algo-
rithm will learn a reduced RSFA for L∗ using Λ with O(n4E)
EQs and O(n6m(E +M)) MQs.

A query complexity comparison among previous algorithms
and our algorithm for related classes of automata is shown
in Table 1. The query complexity of the proposed algorithm
is higher than that of the SFA learning algorithm in [2], es-
pecially for MQs. This is indeed the case when compar-

ing the learning of (non-symbolic) RFAs and DFAs but in
practice learning RFAs requires less queries than learning
DFAs [3]. We expect it would be the case in the learning of
RSFAs and SFAs in practice. It is future work to implement
our algorithm and evaluate how many queries are required
in practice.

REFERENCES
1. Dana Angluin. 1987. Learning Regular Sets from

Queries and Counterexamples. Information and
Computation 75, 2 (1987), 87–106.

2. George Argyros and Loris D’Antoni. 2018. The
Learnability of Symbolic Automata. In Computer Aided
Verification. CAV 2018. 427–445.

3. Benedikt Bollig, Peter Habermehl, Carsten Kern, and
Martin Leucker. 2009. Angluin-Style Learning of NFA.
In IJCAI. 1004–1009.

4. François Denis, Aurélien Lemay, and Alain Terlutte.
2002. Residual finite state automata. Fundamenta
Informaticae 51, 4 (2002), 339–368.

5. Ronald L. Rivest and Robert E. Schapire. 1993.
Inference of Finite Automata Using Homing
Sequences. Information and Computation 103, 2
(1993), 299–347.

6. Margus Veanes, Peli de Halleux, and Nikolai Tillmann.
2010. Rex: Symbolic Regular Expression Explorer. In
Third International Conference on Software Testing,
Verification and Validation, ICST 2010, Paris, France,
April 7-9, 2010. 498–507.

	REFERENCES

