Iterative method of generating artificial
context-free grammars

Olgierd Unold

Department of Computer
Engineering

Wroctaw University of Science
and Technology

27 Wybrzeze Wyspianskiego,
50-370 Wroctaw, Poland
olgierd.unold@pwr.edu.pl

tukasz Culer
Wroctaw Univ Sci & Technol
lukasz.culer@pwr.edu.pl

Agnieszka Kaczmarek
Wroctaw Univ Sci & Technol

agnieszka.kaczmarek@pwr.edu.pl

Extended abstract of the 14th International Conference on Grammatical Inference

ICGI'18, September 5-7, 2018, Wroctaw, Poland.

Abstract

There exist numerous grammar inference methods, that use
sets of both positive and negative examples as an algorithm
input. The origin of these examples could be very diverse -
from real-life data to manually crafted data. Both categories
have their advantages and disadvantages. We present an
alternative approach: the application of an automated gram-
mar generator.

Author Keywords
Grammatical Inference; context-free grammars; grammar
generator.

Real-life data, as learning sets, promises the greatest per-
formance in industrial applications if grammars are inferred
properly. However, due to an imperfection of measurement
equipment, some examples could include errors. Moreover,
some of the phenomenon, that express through those data
cannot be covered with formal language theory methods.

On the opposite side are sets for manually crafted gram-
mars. Despite many advantages, like possessing full knowl-
edge about them or certainty that examples are error-free,
they also create some issues - creating a grammar of given
complexity with positive and negative learning sets is diffi-
cult and time-consuming task.

.
£ < Snr

ST

m‘m
S

R+
\/ 55 < SNt

R
35~ < SNt

vVRp < SNt

where

Snt, 97, Rp € N1
R;vavRB € I\IO

<RL+Rr+2Rp+1

In this paper we would like to present our, currently in final
stage of development, iterative method of generating artifi-
cial context-free grammars, that allows creating a consistent
context-free grammar of given parameters automatically,
with positive and negative example sets. The algorithm con-
sists of several steps. Firstly, a grammar of given parame-
ters is generated using our original approach. Then it used
to generate proper positive and negative sets. [2].

The core part of the algorithm is the grammar generator.

It takes as input given parameters: the exact number of
parenthesis rules with non-terminal symbol (RjS),the exact
number of parenthesis rules without non-terminal symbol
(), the exact number of branch rules (Rg), exact num-
ber of iterative rules (Ry), the maximum number of terminal
symbols (S7) and the maximum number of non-terminal
symbols (Sn7). Alternatively, all those parameters could be
replaced with a Grammar Complexity Index (GC'I). It is in-
tended to be a simple indicator of grammar complexity and
is defined as the sum of all grammar rules (|R|) and was
created to allow the generation of many grammars similar
in complexity, conserving their structural diversity. The rule
types were selected based on paper by Sakakibara The
procedure starts with adding all parenthesis rules without

a non-terminal symbol. During creation, the algorithm ran-
domly chooses whether to create a new symbol (preserving
the parameter requirements). Then, all other rules are cre-
ated randomly using existing symbols or creating new ones.
The creation of a non-terminal symbol is allowed only if it
will be attached to the left-hand side of the new rule and the
previously added non-terminal symbol would be applied to
the right-hand side at least once. This approach ensures
that all symbols are productive. The procedure has also to
verify, that all a left-hand side symbols of parenthesis rules
without non-terminal symbols are connected. The last step
is a conversion of the recently added non-terminal symbol

into a start symbol. This conversion makes all productive
symbols achievable, which results in a consistent grammar.

A mathematical analysis of this procedure provided full in-
sight into its properties. One of them was the possibility to
create a grammar using given parameters. A grammar is
generated using the described procedure if set (1) is con-
sistent.

The positive set generator was introduced based on the
paper by Mayer and Hamza [1]. Set creation begins with
grammar conversion to linear grammar. Then, a graph
based on it is created. Positive examples are created using
given paths, that consists of 1,2 and 3-element combina-
tions of rules.

The negative set is created iteratively - a random string built
using terminal symbols is created and entered into the CYK
algorithm [4]. If the algorithm does not parse the string, it
does not belong to the language, so it is a negative exam-
ple. This procedure is repeated until the demanded number
of examples is created.

An example grammar generator run is printed in Table 1 for
given parameters— R, = 2, RS = 0, Rp = 1, R = 2,
Syr = 4 and S = 3. The symbols and rules added in

a certain step are marked in bold. The final grammar was
obtained using the latest version of tool available at the web
site [3].

Future work will focus on introducing new grammar at-
tributes that describe their behaviour in terms of example
generation and structure. Consequently, that would lead to
new parameter creation for the generation process, allowing
thegenerated grammar’s specific attributes to be easier to
control and customize.

Step 1 Step2 Step 3 Step 4 Step 5 Step 6
S| R |[s] R |[s|] R |s] R [s|] R |s]| R
A Abab| A A—bab | A A—ab A A—ab |A A—ab | A A—ab
a B B—+bc | B B—bc |B B—bc | B B—bc | B B—bc
b a C CoAA|C C—HAA | C C—AA | $ $—AA

b a a A—>Cc|a A—Cc|a A—-$c
c b b b C—Bc|b $—Bc
c c c c

Table 1: An example grammar generator run.

Acknowledgements

The research was supported by National Science Centre
Poland (NCN), project registration no. 2016/21/B/ST6/-
02158.

REFERENCES
1. Mikaél Mayer and Jad Hamza. 2016. Optimal test sets
for context-free languages. arXiv preprint
arXiv:1611.06703 (2016).

2. Yasubumi Sakakibara. 2005. Learning context-free
grammars using tabular representations. Pattern

Recognition 38, 9 (2005), 1372—1383.

3. Olgierd Unold, Agnieszka Kaczmarek, and tukasz
Culer. 2018. Language Generator. http://lukasz.
culer.staff.iiar.pwr.edu.pl/gencreator.php.

(2018).

4. Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n 3. Information and
control 10, 2 (1967), 189-208.

http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php
http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php

	Acknowledgements
	REFERENCES

