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Abstract
A modified inside-outside algorithm to estimate probabilistic
parameters over implicit positive and negative evidence was
proposed. We have demonstrated that a contrastive esti-
mation based method significantly outperforms a standard
inside-outside algorithm in terms of Specificity, without any
loss of Sensitivity.
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Probabilistic context–free grammars (PCFGs) are applied
successfully to biological sequences modeling from the
early 90s [6]. Some, but not all, attempts are listed in [5].

Given a task, for example, biological sequences (RNA,
DNA, proteins) to be modeled, the question then arises
how to induce probabilistic grammar from unannotated
data (so-called unsupervised learning). The task of learning
PCFGs from data consists of two subproblems: determining
a discrete structure of the target grammar and estimating
probabilistic parameters in the grammar. Given the fixed
topology of the grammar, the inside-outside algorithm [1, 4]
is the standard method used to estimate the probabilistic
parameters of a PCFG. This procedure is an expectation-
maximization (EM [2]) method for obtaining maximum like-
lihood of the grammar’s parameters. However, it requires



the grammar to be in Chomsky normal form, and it accepts
only positive examples in the learning data. Note that in
1969 Horning proved [3] that for effective PCFG induction
no negative evidence are obligatory. Using only positive
data in learning PCFG has one significant disadvantage of
inducing grammars which are not specific for a given lan-
guage, i.e. not able to distinguish negative examples.

To overcome that problem we propose a modified inside-
outside algorithm to estimate probabilistic parameters over
implicit positive and negative evidence in learning data.
We employ the concept of Contrastive Estimation (CE) [7],
a method that provides a way to use implicit negative evi-
dence. The idea of CE is to generate a given positive sen-
tence s, a large neighborhood N(s) of ungrammatical sen-
tences as negative evidence, by perturbing s with certain
operations. Note that EM can be seen as a specific case
of CE, where the neighborhood N(s) is the entire set of
learned sentences. It should be noted that instead of the
PCFG, CE uses weighted context-free grammar.

In a proposed approach, called IOCE (inside-outside CE),
we introduce the CE factor of the rule:

Cϕ,CE(A −→ α) =
Cϕ(A −→ α)

Cϕ(A −→ α) + Cϕ,ng(A −→ α)

where:
Cϕ(A −→ α)–the estimated count of the number of times
that a particular rule is used in positive evidence,
Cϕ,ng(A −→ α)–the estimated count of the number of
times that a a particular rule is used in a neighborhood.
The probability of the rule is calculated as follows:

ϕ
′
(A −→ α) =

Cϕ(A −→ α)∑
β Cϕ(A −→ β)

· Cϕ,CE(A −→ α)

We tested two different neighborhoods. In the first one (IO-
CEa, all negatives), the neighborhood for each positive sen-
tence is created by choosing a determined number of sen-
tences from the set of all available negative sentences. In
the second one (IOCEs, negatives of the same length), we
choose the determined number of sentences from the set of
all negatives of the same length (plus/minus 2 symbols) as
the positive sentence.

We compared our approach with two different neighbor-
hoods to a standard IO over 12 test artificial languages:
regular (tomita1 - tomita7) and context-free (ab, anbn, pal2,
bra1, bra3). Comparative analysis of the three measures
of Sensitivity, Specificity, and F1 with standard deviation) is
summarized in Table 1. All experiments were done using
pyGCS library [8].

Regardless of the neighborhood, the Specificity of the gram-
mar induced by the novel method is twice as high (0.80 vs
0.40) compared with the standard IO.

We showed that PCFG trained using implicit negative ev-
idence can drastically outperform IO-trained grammar in
terms of Specificity and F1 score.
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Algorithm Sensitivity Specificity F1

IO 0.87 ±0.01 0.40 ±0.01 0.64 ±0.01
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