
An Enhancement to CYK Algorithm for
Grammar Induction

Paweł A. Ryszawa
Military University of Technology, Faculty of Cybernetics
pawel.ryszawa@wat.edu.pl

Extended abstract of the 14th International Conference on Grammatical Inference
ICGI’18, September 5–7, 2018, Wrocław, Poland.

Abstract
A novel view on grammar induction process is proposed
here. It introduces some enrichments to the well-known
CYK algorithm in the hope of improving its performance.
The expected speed-up is believed to result from the fact
that it is less costly to compute a CYK table for some gram-
mar from another CYK table that was computed for a similar
grammar.

Author Keywords
Grammar induction; CYK algorithm.

Grammatical inference has recently earned more interest
as the computing power is increasing every day and new
results of research in this area are being obtained. At its
early stage, the research on formal grammars was focused
on parsing with a formal grammar given a priori. That is,
one might have asked: What should a correct text look like,
given a grammar that is known to be correct? However, one
might also raise the opposite question: What is a correct
grammar given a text or texts known to be correct? While
the former question has well known answers proved in the
area of parsing and compiler construction, the latter shows
more difficulties.



It is assumed that grammar productions are of one of the
following forms:

〈nonterminal〉 → 〈nonterminal〉 〈nonterminal〉 (1)

〈nonterminal〉 → 〈terminal〉 . (2)

It is also assumed that the grammars do not produce empty
strings, hence it is not necessary to include production
rules of the form 〈nonterminal〉 → ε. Both (1) and (2) form
Chomsky Normal Form for the class of grammars in ques-
tion.

Assumed grammar and its encoded form

1. For every terminal symbol, there exists unique non-
terminal one. The following production rules connect
them and are assumed to belong to the grammar:
A1 → a1, A2 → a2, . . . , Aw → aw, where ai’s are
terminal symbols.

2. There might be more nonterminal symbols: V =
{A1, . . . , Aw, Aw+1, . . . , Ap }.

3. There might also be more production rules - each
from the following (ordered) list of p3 rules:
P1 : A1 → A1A1, P2 : A1 → A1A2, . . . , Pp : A1 →
A1Ap, Pp+1 : A1 → A2A1, . . . , Pp3 : Ap → ApAp

4. There is a distinguished starting symbol S ∈ V .

The grammar is represented by the binary strings of length
p3. The 1 at the n-th position means that Pn belongs to the
grammar. If this is 0, then Pn is not there.

Grammar Induction as an Optimisation Problem

1. The CYK table is the very basic data structure for the
algorithm:

X1,l

X1,l−1 X2,l

X1,l−2 X2,l−1 X3,l

...
...

...
. . .

X1,1 X2,2 X3,3 . . . Xl,l

2. The algorithm is a binary optimisation problem with-
out restrictions. Feasible solutions consist of all pos-
sible binary representations of the underlying gram-
mars (given the assumed maximal number of produc-
tion rules).

3. The fitness function prefers smaller grammars to big-
ger ones (the less 0’s in their binary representations,
the better). However, grammars producing bigger
parts of the input text (positive example) are preferred
to other grammars. The greatest difference between
i and j, such that Xi,j is not empty, determines the
longest substring of the input text that the grammar
can produce. Hence, the greater such j − i, the bet-
ter.

4. Each iteration gives a potential solution (binary string)
that do not differ much from the previous one. Thus,
their CYK tables do not differ much as well.

5. Intuitively, the computing of CYK table in some itera-
tion should make use of a previous one as both might
be similar.

6. The smallest difference between two CYK tables
takes place, if their underlying grammars differ by one
production rule, i.e. the binary strings encoding them
differ by exactly one digit. Other differences consist in
having binary strings differing by more digits.



7. It is costly to compute the whole CYK table. However,
it should not be that costly to compute new CYK table
from a similar one.

Enhanced CYK data structure

1. The CYK table needs to be enhanced to allow for
easy transformation between two similar ones.

2. If, based on production rule Pq : Ad0 → Ad1Ad2 ,
the nonterminal symbol Ad0 was put to the set Xi,j

because Ad1
has already been put to some Xi,k and

Ad2
has already been put to some Xk+1,j , it should

be remembered as a tuple of 7 numbers in an auxil-
iary table (e.g. in some relational database). For the
sake of simplicity, the tuple can be represented by the
corresponding indices: (q, i, k, j, d0, d1, d2). This is
depicted as follows:

Xi,j = { . . . Ad0
. . . }

Xi,k = { . . . Ad1
. . . }

Pq : Ad0
→ Ad1

Ad2

(q, i, k, j, d0, d1, d2)

Xk+1,j = { . . . Ad2
. . . }

3. It may happen that Ad0
in Xi,j can be derived in

more than one way:

Xi,j = { . . . Ad0
. . . }

Xi,k = { . . . Ad1
Ad′

1
. . . }

Xi,k′ = { . . . Ad′′
1

. . . }

Xi,k′+1 = { . . . Ad′′
2

. . . }
Pq

Pq′

Pq′′

Xk+1,j = { . . . Ad2
Ad′

2
. . . }

Then, more than one appropriate row should be in-
serted to the auxiliary table.

From one CYK table to another

1. Adding new production rule Pr to the underlying
grammar means looking for derivations represented
by tuples of the form (r, ∗, ∗, ∗, ∗, ∗, ∗) where * stand
for “any value”. By cascade, finding new nonter-
minal symbols in sets Xi,k and Xk+1,j , for some
i ≤ k ≤ j, entails matching them against right-hand
side of any existing production rule and, if necessary,
add its left-hand side symbol to Xi,j , and so on...

2. Deleting some production rule Pr means deleting all
the rows of the form (r, ∗, ∗, ∗, ∗, ∗, ∗) from the aux-



iliary table. If some derivation represented by this
row was the last one to derive some symbol Ad0

in Xi,j , this symbol should be removed from there
and, by cascade, further derivations represented by
(∗, ∗, i, j, ∗, ∗, d0) and (∗, i, j, ∗, ∗, d0, ∗) should be
removed as well, and so on... The following picture
shows removed derivations (or its representations in
the auxiliary table) in dashed lines:

Xij = { . . . Ad0
. . . } := Xij \ {Ad0

}

Xx,i−1 = { . . . Ad3
. . . }

Xj+1,y = { . . . Ad4
. . . }

Pq′′′

Pq′′′′

Pq

If, on the other hand, a particular derivation was not
the last one to generate Ad0

in Xi,j , this nonterminal
symbol is not removed and a cascade removal of
further derivations is not triggered either.

Xij = { . . . Ad0
. . . }

Xx,i−1 = { . . . Ad3
. . . }

Xj+1,y = { . . . Ad4
. . . }

Pq′′′

Pq′′′′

Pq

Pq′

Pq′′

3. The above procedure is expected to be faster than
computing the whole CYK table from scratch just be-
cause of adding this extra production rule.

Conclusions

• Given a computed CYK table, the fitness function
should be easy to compute as well.

• Having some CYK table, it is also relatively easy to
transform to a CYK table for a similar grammar.

• In result, the grammar induction problem for positive
examples can be expressed as a relatively fast opti-
misation problem.

• The algorithm should be easily implemented with
SQL statements in a relational database system.



Forthcoming Research

An appropriate binary optimisation method should be ap-
plied to find a grammar in the above described method.
Considered are quantum-inspired genetic algorithms (QIGA)
as these are natural for unrestrictged problems. Further
empirical research should focus on input texts from natural
languages and QIGA as the underlying solver.

Second, negative examples play important role in grammar
induction. Hence, they must be incorporated in this algo-
rithm.

REFERENCES
1. John E. Hopcroft, Rajeev Motwani, and Jeffrey D.

Ullman. 2001. Introduction to Automata Theory,
Languages, and Computation (2 ed.). Pearson
Education.

2. Wojciech Wieczorek. 2017. Grammatical Inference.
Algorithms, Routines and Applications. Springer
International Publishing.

3. Daniel H. Younger. 1967. Recognition and Parsing of
Context-Free Grammar in Time n3. Information and
Control 10, 2 (1967), 189–208.


	REFERENCES 

