Improved Grammar Compression in

Constant Space

Reimi Tanaka Yoshimasa Takabatake
Department of Informatics Kyushu Institute of Technology
Kyushu Institute of Technology takabatake@ai.kyutech.ac.jp
680-4 Kawazu, lizuka, Fukuoka

820-8502, Japan

r_tanaka@donald.ai.kyutech.ac.jp

Tomohiro | Hiroshi Sakamoto
Kyushu Institute of Technology Kyushu Institute of Technology
tomohiro@ai.kyutech.ac.jp hiroshi@ai.kyutech.ac.jp

Extended abstract of the 14th International Conference on Grammatical Inference
ICGI'18, September 5-7, 2018, Wroctaw, Poland.

Abstract

Grammar compression is one of practical compression
models based on CFG that is restricted to derives a sin-

gle string deterministically. To minimize the CFG, the task
of grammar compression is closely related to finding and re-
moving duplicated patterns in the input string, and thus the
process of finding a minimal grammar is simply considered
to be the frequent pattern discovery. We demonstrate how
to improve one of such algorithms.

Author Keywords
Grammar Compression; Online Algorithm; Approximation
Algorithm; Frequent Pattern Discovery.

In the last decade, various grammar compression algo-
rithms have been proposed intending the frequent pattern
discovery in a small space. Almost grammar compression
algorithms run in linear time in the input length, however, a
huge working space is required for longer patterns. Basi-
cally, space-efficient grammar compressions are designed
as online algorithms; Given a current grammar G,, for a
current input string w and the next input symbol a, an on-
line algorithm is required to construct the next G,,+1 for wa
without decompressing G,,. A frequent pattern mining al-
gorithm proposed by [1] is one of these online algorithms
placed in this framework.

However, one of the most successful grammar compres-
sions called Re-Pair proposed by [2] has an inherent dif-
ficulty for online construction because a most frequent bi-
gram XY must be found to be replaced by a symbol 7 as-
sociated by the production rule Z — XY'. For the length
n of the input string, a naive Re-Pair algorithm requires

a priority queue in Q(n) space containing of all bigrams
according to the frequencies. Therefore, several practical
implementations of Re-Pair maintain only top-k bigrams en-
listing a technique for frequent item mining in stream data
proposed by [3].

Lately, a space-efficient Re-Pair like algorithm, called Freg-
Re-Pair, was proposed by [4] based on the above strategy
preserving the compression ratio. Instead of storing all bi-
grams, Freqg-Re-Pair maintains top-k bigrams with their rel-
ative frequencies with a fixed k. When a new bigram to be
stored appears, the algorithm tries to resister it in the table
where if there is no space for the new entry, the algorithm
reduces all frequencies by one until a slot opens up. Al-
though the exact ordering is lost, it is guaranteed that the
table maintains top-k frequent bigrams in the string pro-
cessed so far. Freg-Re-Pair is the three-path algorithm
consisting of the processes: (i) computing top-k table T’
for the input string w, (ii) deciding the first position in w of
any bigram in T" taking account of overlap of bigrams, (iii)
executing the replacement of all bigrams after the positions
decided above, and the algorithm iterates this process until
there is no frequent bigram.

Inspired by this study, we propose an improved Freqg-Re-
Pair in the following points of view: (1) One of overlapping
bigrams XY or Y Z in XY 7 is replaced according to the
relative frequency in the top-k table (Freq-Re-Pair does

not takes account this information). (2) The process (ii) in
Freqg-Re-Pair is omitted for reducing the working space. We

compare the performance of these two algorithms for differ-
ent types of strings including both highly repetitive strings
and ordinary strings of megabytes.

As shown in Table 1 for DNA sequences (Escherichia_Coli),
our algorithm significantly improves the memory consump-
tion preserving the compression ratio. The result for an or-
dinary string is shown in Table 2. Similarly to the case of
highly repetitive strings, we can observe that our algorithm
is more space-efficient than Freg-Re-Pair. Originally, Freg-
Re-Pair was applied to learn linear models for classification,
regression and feature extraction with various massive high-
dimensional data. Besides these applications, an important
our future work is an application to the frequent pattern min-
ing and the comparison of the performance among other
pattern mining algorithm.

Acknowledgements
This research is partially supported by KAKENHI (18K18111,
17H01791, 16K16009, 17H00762).

REFERENCES

1. S. Fukunaga, Y. Takabatake, T. I, H. Sakamoto. Online
Grammar Compression for Frequent Pattern Discovery.
In ICGI, pages 93—104, 2016.

2. N.J. Larsson and A. Moffat. Offline dictionary-based
compression. Proceedings of the IEEE, 88(11):
1722-1732, 2000.

3. G.S. Manku and R. Motwani. Approximate Frequency
Counts over Data Streams. In VLDB, pages 346-357,
2002.

4. Y. Tabei, H. Saigo, Y. Yamanishi and S. J. Puglisi.
Scalable Partial Least Squares Regression on
Grammar-Compressed Data Matrices. In KDD, pages
1875-1884, 2016.

proposed Freq-Re-Pair
#op-k | 10° 10° 107 10° 10° 107
compression time (s) | 1075 861 825 820 1190 1165
compression ratio (%) | 14.88 4.37 4.36 13.58 9.47 7.35
working space (MB) | 8.71 88.14 300.12 | 46.68 157.90 904.38
Table 1: Performance analysis for highly repetitive string (Escherichia_Coli, 110MB).
proposed Freq-Re-Pair
#top-k | 10° 108 107 10° 106 107
compression time (s) | 1838 2298 2459 1584 2103 2379
compression ratio (%) | 21.14 16.53 12.86 | 20.24 15.81 12.19
working space (MB) | 8.83 87.92 957.23 | 38.51 138.59 1100.09

Table 2: Performance analysis for ordinary text (English, 200MB).

	Acknowledgements
	REFERENCES

